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Let R I[)" I be the collection of functions analytic on the disk D" =
Iz II z I <p I, and let A I' be the set of all functions fro~ RID p I which have at
least one singularity on the circle Iz I = p. Further, let D p = Iz II z I ,,:;; P I·

Let us denote by P Il - I (f, z) the Lagrange interpolatory polynomial of
IE A" on the nth roots of unity, and if((z) = )~: "a,z', then let

11- J

\,'P II Ijf,Z)=
, 11

I I

d ll 1.IU:Z)=PIl ,(fz)- \" PII Ij/:z).
i n

Then, a result of Cavaretta et al. III can be stated as

THEOREM A. For each I~ AI' (P> I) and each positive integer I,

lim d" _ I,/U: z) = 0
fl--->'I

(I)

the cOlll'ergence being uniform and geometric on any closed subset 0/ D"I I·

Afureocer. (I) is best pussible in the.. sense that there is someJE A p and some
i ll'ith Ii! = pi + 1 for which d

ll
I./(f, i) does not tend to zero as n ----> CI).

The case I = I was proved by Walsh 121. In 131. Saff and Varga
investigated d

ll
.. ,)f, z) if I z I > pi ~ '. They established

THEOREM B. For each IE AI' and/or each positive integer I, d ll I,IU: z)
con be bounded in at most I distinct points in I z I > pi + I. This result is sharp.
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in the sense that, given any I distinct points j IJd ~ I in the annulus t/ ' I <

Izl <pI12, there is an]EApjor which

k =, 1.2..... 1. (2)

Concerning to the latter result, the following questions arise:

(i) In Theorem B, is the restriction III k I < pi' 2 necessary?

(ii) For which functions is (2) true with prescribed jlld~ I'?

(iii) What is the situation in the case p = I'?

In the following. we deal with these questions. Let s. I and L be positive
integers with s";; I < L, let p > I. and let Ilh? ~ I be distinct points with
pi" 1< Illkl < pi" I (k = I. 2,. ... s). Further, let ![J E AI" and tjJ E R IDn~ <I " I.
where r is the least common multiple of U-t- I, 1+ 2..... L I and (1, =

max isk .Illhl·

THEOREM I. Let w,(z) = [l~ I(Z- 'lk) and lei

Then.jE AI' and

j(z) = w,(z) ![J(z') + Ij/(Z). (3 )

lim dn I./U; Ilk) = 0
n ---f-(f

(k=I.2 ....• s). (4)

Proof As a~;l/t II> p. then Ij/ is analytic in D
p

• and as w(z') E AI" It

follows that j E A I' .
N ow let j E A I' be arbitrary. and write j(z) = L: 0 a k z k. Further. let

g(z) =j(z)/w,(z) = L..:t 0 bkzk. It follows that g E AI' and ak = LJ OfJJJk J

if k~s, where w,(z)=2..:J ufJi ..Izi=L...J oPizi . Since Pn IUZ)=)'Z (\Zk
'>'/-Oa k_in (see. e.g., II. p. 160. Eq. (2.9)1).

Here

1/- i Is n I .~ \
\' \' i _k i)~ \' (fJ i) \' \'[(1)= __ (fJi Z )(bjn+k-i"' -_ i Z \ +
i 0 k U I 0 ( 0,. k k i

n 1 i -- 1

= W,(Z) \ ' bjntkzk + \ ' fJi \ ' bin. k iZk
k 0 ilk 0

~ i -- I

_Zn \' Pi \' bnl.hllfk_iZk.

ilk U

fI k. /1 i i
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so

i- 1

- Z n \' P" \' Z k \' b
jn~k- I'

i I k-O j~ltl

Hence, denoting

i-I L

hn(z) = \' Pi \' Zk \' bin +k- i •

ilk 0 jd, 1

(4) is true iff
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(k= 1,2, ... ,5). (5 )

We next write hn(z) as

i-I I. I I

hn(z) = \' Pi \' k \' bin +k - I + \' Pi \' ZkZ
I 1 k 0 j (.+ 1 I I k 0 i I· 1

Let r; > 0 be such that as < (p-r;t+ l
. Since gEA p ' then limk;j Ibk Lk

lip. hence Ibkl < I/(P ~ r;)k if k > ko(/;)' Thus,

as n ---> 00.

Now we show that if g(z) = iP(zr), then hn,I(Z) = O. If r is not a divisor of m.
then bill = O. If / + 1 ';;j';; L, then j I r by the definition of r, If 0';; k <
i ~ 5 ,;; /. then j is not a divisor of i - k so r is not a divisor of jn + k i.

Hence bin I k 1=0 and so hn,,(Z) = 0, From this (5) follows when fez) =

W,(z) w(zr) so in this case (4) is true, It follows from Theorem A that if
/= Ij/. then (4) is true. but as dn _ 1,1 is a linear operator. we have proved our
statement. Q,E,D.

1n Theorem 1 we gave a sufficient condition for (4), In the case of 5 = /

and L = / + 1 we give a necessary condition for (2).

THEOREM 2. 1//EA o ' r/' 1< 117kl <p'"2 (k= L2,.... /) and (4)/U/j7//5
lI'ith 5 = / then

/(Z)=WI(Z)cp(ZI+I)+ Ij/(Z), (6 )
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Proof From the proof of Theorem I it is obvious that-·-using the same
notations--

lim tl ~ h". I ( tld = 0
fI-....f

By the definition of h".,. we may write

(k,= 1.2•.... 1). (7 )

Ii'

h".,(tl k ) = ~ fJi \" 'r~b,,(/. II i i

i' i U

I

\,'
_ b",/ll:
i ,

I

\. If II'
; - /"/ " (8 )

First we prove that the system of equations

(k= I ..... /). (l) )

is solvable for the (X,U)'s as "unknowns:' with arbitrary su' We prove it by
induction on I. If 1= 2. then it follows by easy computation.

Let w,.,(z) = wI(z)(z,- II1I ,) =) "i' ,\fJi./' [Zi. Then

fJi.ti' ccc-fJu.,tl",

=fJi I.,-tl lel ·fJ i .,

=1

if i = O.

if 0 < i < If I.

if i = I + 1.

I

= \,' U1cJj) \1' \,' (fJi I.I- tll' Jji./)tl~ '+fJull[ , d
; I [ ,

I I I

= \. u'I,(J)(Ji 1.1+ (Ilk-til.') \,' (XI.,(J) \" fJi.ftl~ i
i I· ; Iii

(k = I. 2..... I + \).

So

(k = l. 2..... /).
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Hence we have reduced the case I + I to the case I and completed the
inductive proof.

Writing, in (9), bn(/ + 1)- j instead of a,(J), we get, by (7), i~k.Il = o(llh in)
(k = I, 2'00" I). Solving (9) for bn(/ + 1I ), we obtain

(J = 1,2,... , l), (10)

. I' Ib ,·II/In(/+II-)I.:::: ',),.-1(/+ I) (j'= 1.2..... 1). Thus.I.e., lmn~I n(/i I) "" . . • •

f. ,

g(z) = '\ ' bj(/ + Ilzj(/" I) + '\' '\' bn (/+ 11+)znll+ 11-) = gl(z) +g,(z).
) 0 n 0 j I

From (10), g2ER[Dy]i(/fll!. Now. gEA p so that glEAp as well: hence
gl(z) = rp(ZI-c I), where rp E A p"! which gives the desired result. Q.E.D.

Remark I. There exists agE A I such that, for any '7 E (,

(P? I),

where Jp(z) = (z - IJ) g(z/p) (here g is independent of the choice of 17).

Proo}: Let g(z) = Lp p- 2
Z P -

I
, where p runs over the primes. Evidently

g E A 1 and g is continuous in 151 ; so d" I./(/p) exists even in the case p = I.
In the case s = I, h,,(z) takes the form

hn(z)= \' bi"I'
i !.+ I

so h,,(z) is identically 0 because a comosite number minus one is never equal
to a prime number minus one. Hence, by (5). we have proved our statement.

Remark 2. Above we gave an example of a function JE A I for which

d,,_ I./(/' z) converges to 0 at a point outside Iz I~ 1. It remains an open
question whether a function J E A I exists such that d,,_ I,/(}: z) converges to
zero at several points outside 1 z I ~ I.

Remark 3. Theorem 2 is a partial converse of Theorem I. It would be
interesting to characterize all functions for which (4) is true.

Remark 4. In [II, Cavaretta et al. proved that ifJE A p (p> I) and if/
is continuous on 1 z 1 ~ p, then

where

max Id,,_ I I(}: z)1 = O(E" 1(/))'
1:1 <pl' I •

E n(/) = min max I/(z) - p,,(z)i.
I: I p

as n -. 00,

(II)
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the minimum being taken over all polynomials p,,(z) of degree <,n. The
following simple example shows that this estimation is sharp. Let fE A I' :

fez) = Lk o(zlp)k bk, where bk>O. Then

I

n I '

E" 1(/) ~ I';]~~ f(z) - '\' (zlp)k bk I,

k 0

and

= max
101 ";1' I

~, (zlp)k bk 1

k 11 I

(12 )

n I " I

Id ( I" 11 '\' klltll'\' k-i"b . "- '\' {,Ilkmax ,,-I I j, Z = _ p _ P kt.l" ~ _ I"
101";1"1 1

' kO if kO

>p Ib lltll " I' (13 )

Now let g/(z) = Lk o(zip )11 + I)' 11(1 + I )'. Evidently gl E A p and, by (12),
(13) and an easy computation, for all positive integers n and I,

I.e.,

This proves the sharpness of ( II ).
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