Some Remarks on a Theorem of Saff and Varga

T. Hermann

Mathematical Institute of the Ifungarian Academy of Sciences. Reáltanoda u. 13-15. Budapest H-1053. Hungary

Communicated by Richard S. Varga
Received May 11, 1982

Let $R\left|D_{o}\right|$ be the collection of functions analytic on the disk $D_{p}=$ $\left\{z||z|<\rho\}\right.$, and let A_{ρ} be the set of all functions from $R\left|D_{\rho}\right|$ which have at least one singularity on the circle $|z|=\rho$. Further, let $\bar{D}_{\rho}=\{z| | z \mid \leqslant \rho\}$.

Let us denote by $p_{n-1}(f, z)$ the Lagrange interpolatory polynomial of $f \in A_{\rho}$ on the nth roots of unity, and if $f(z)=\sum_{k}{ }_{k} a_{k} z^{k}$, then let

$$
\begin{aligned}
& P_{n-1, j}(f, z)=\sum_{k-1}^{n-1} a_{k+j n} z^{k}, \\
& d_{n, 1, i}(f, z)=p_{n},(f, z)-\bigcup_{1} P_{n} \quad 1, j(f, z)
\end{aligned}
$$

Then. a result of Cavaretta et al. |1| can be stated as

Theorem A. For each $f \in A_{\rho}(\rho>1)$ and each positive integer l.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{n-1, l}(f, z)=0 \quad \text { if } \quad z \in D_{\rho^{\prime-1}} \tag{1}
\end{equation*}
$$

the comvergence being uniform and geometric on any closed subset of $D_{\rho^{i+1}}$. Moreocer, (1) is best possible in the sense that there is some $\tilde{f} \in A_{\rho}$ and some \tilde{z} with $|\tilde{z}|=\rho^{\prime+1}$ for which $d_{n-1, l}(\tilde{f}, \tilde{z})$ does not tend to zero as $n \rightarrow \infty$.

The case $l=1$ was proved by Walsh $|2|$. In $|3|$. Saff and Varga investigated $d_{n-1,1}(f, z)$ if $|z|>\rho^{l+1}$. They established

Theorem B. For each $f \in A_{\rho}$ and for each positive integer $l, d_{n}{ }_{1, l}(f, z)$ can be bounded in at most l distinct points in $|z|>\rho^{l+1}$. This result is sharp.
in the sense that, given any l distinct points $\left\{\eta_{k}\right\}_{k}^{\prime}$, in the annulus $\rho^{i ; 1}<$ $|z|<\rho^{l+2}$, there is an $\hat{f} \in A_{\rho}$ for which

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{n-1, l}\left(\hat{f}, \eta_{k}\right)=0, \quad k=1,2 \ldots . . l . \tag{2}
\end{equation*}
$$

Concerning to the latter result, the following questions arise:
(i) In Theorem B, is the restriction $\left|\eta_{k}\right|<p^{l+2}$ necessary?
(ii) For which functions is (2) true with prescribed $\left\{\eta_{k}\right\}_{k}^{\}}$?
(iii) What is the situation in the case $\rho=1$?

In the following, we deal with these questions. Let s, l and L be positive integers with $s \leqslant l<L$, let $\rho>1$, and let $\left\{\eta_{k}\right\}_{k}^{\circ}$, be distinct points with $\rho^{l+1}<\left|\eta_{k}\right|<\rho^{t+1}(k=1,2, \ldots, s)$. Further, let $\varphi \in A_{\rho^{\prime}}$ and $\psi \in R \mid \bar{D}_{a a_{1}^{\prime}, \|, \cdots \mid}$ where r is the least common multiple of $\{l+1, l+2 \ldots, L\}$ and $\alpha_{s}=$ $\max _{1 \leqslant k \leqslant s}\left|\eta_{k}\right|$.

Theorem 1. Let $\omega_{s}(z)=\prod \prod_{k}^{s}-1\left(z-\eta_{k}\right)$ and let

$$
\begin{equation*}
f(z)=\omega_{s}(z) \varphi\left(z^{r}\right)+\psi(z) . \tag{3}
\end{equation*}
$$

Then, $f \in A_{\rho}$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{n \cdots 1,1}\left(f, \eta_{k}\right)=0 \quad(k=1.2 \ldots, s) . \tag{4}
\end{equation*}
$$

Proof. As $\alpha_{s}^{1((1+1)}>\rho$, then ψ is analytic in \vec{D}_{ρ}, and as $\varphi\left(z^{r}\right) \in A_{\rho}$, it follows that $f \in A_{\rho}$.

Now let $f \in A_{\rho}$ be arbitrary, and write $f(z)=\sum_{k}{ }_{01} a_{k} z^{k}$. Further. let $g(z)=f(z) / \omega_{s}(z)=\sum_{k-{ }_{0}} b_{k} z^{k}$. It follows that $g \in A_{\theta}$, and $a_{k}=\sum_{j, ~}^{10} \beta_{j} b_{k}$ if $k \geqslant s$, where $\omega_{s}(z)=\sum_{j}^{s}{ }_{0} \beta_{j, s} z^{j}=\sum_{j=0}^{j}{ }_{0} \beta_{j} z^{j}$. Since $p_{n} \quad(f \cdot z)=\sum_{k}^{n} \quad 0_{0}^{1} z^{k}$ $\sum_{j=1}^{\infty} a_{k+j n}$ (see, e.g., |1, p. 160 , Eq. (2.9)|).

Here

$$
\begin{aligned}
& -z^{\prime \prime} \sum_{i}^{5} \beta_{i} \sum_{k=0}^{i-1} b_{n(j+1)+k-i} z^{k} \text {. }
\end{aligned}
$$

so

$$
\begin{aligned}
& d_{n-1, l}(f, z)=\omega_{s}(z) d_{n-1, l}(g, z)+\bigvee_{i=1}^{5} \beta_{i} \sum_{k-0}^{i-1} z^{k} \bigvee_{i-1}^{\infty} b_{j n+k-i} \\
& -z^{n} \grave{i}_{i=1}^{s} \beta_{i} \sum_{k-0}^{i-1} z^{k} \sum_{j=i+1}^{\infty} b_{j n-k-i} .
\end{aligned}
$$

Hence, denoting

$$
h_{n}(z)=\sum_{i=1}^{s} \beta_{i} \sum_{k-0}^{i-1} z^{k} \sum_{j=1+1}^{\infty} b_{j n+k-i}
$$

(4) is true iff

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \eta_{k}^{n} h_{n}\left(\eta_{k}\right)=0 \quad(k=1,2, \ldots, s) \tag{5}
\end{equation*}
$$

We next write $h_{n}(z)$ as

$$
\begin{aligned}
& =h_{n, 1}(z)+h_{n, 2}(z) \text {. }
\end{aligned}
$$

Let $\varepsilon>0$ be such that $\alpha_{s}<(\rho-\varepsilon)^{d+1}$. Since $g \in A_{\rho}$, then $\overline{\lim }_{k \rightarrow \sigma}\left|b_{k}\right|^{1 / k}=$ $1 / \rho$, hence $\left|b_{k}\right|<1 /(\rho-\varepsilon)^{k}$ if $k>k_{0}(\varepsilon)$. Thus,
$\left|\eta_{k}^{n} h_{n, 2}\left(\eta_{k}\right)\right|=0\left(\frac{\left|\eta_{k}\right|^{n}}{(\rho-\varepsilon)^{n(l,+1)}}\right)=0\left(\left(\frac{\alpha_{s}}{(\rho-\varepsilon)^{I+1}}\right)^{n}\right) \rightarrow 0 \quad$ as $\quad n \rightarrow \infty$.
Now we show that if $g(z)=\varphi\left(z^{r}\right)$, then $h_{n, 1}(z)=0$. If r is not a divisor of m. then $b_{m}=0$. If $l+\mathrm{I} \leqslant j \leqslant L$, then $j \mid r$ by the definition of r. If $0 \leqslant k<$ $i \leqslant s \leqslant l$, then j is not a divisor of $i-k$ so r is not a divisor of $j n+k-i$. Hence $b_{j n+k-i}=0$ and so $h_{n, 1}(z)=0$. From this (5) follows when $f(z)=$ $\omega_{s}(z) \varphi\left(z^{r}\right)$ so in this case (4) is true. It follows from Theorem A that if $f=\psi$, then (4) is true, but as $d_{n-1, l}$ is a linear operator, we have proved our statement.
Q.E.D.

In Theorem 1 we gave a sufficient condition for (4). In the case of $s=1$ and $L=l+1$ we give a necessary condition for (2).

TheOrem 2. If $f \in A_{\rho}, \rho^{l+1}<\left|\eta_{k}\right|<\rho^{l+2}(k=1,2, \ldots, l)$ and (4) fulfills with $s=1$ then

$$
\begin{equation*}
f(z)=\omega_{l}(z) \varphi\left(z^{l+1}\right)+\psi(z) \tag{6}
\end{equation*}
$$

where $\varphi \in A_{p^{\prime}, 1}$ and $\psi \in R\left|D_{\eta_{1}^{\prime},(, \cdots}\right|$. Here $\gamma_{1}=\min _{1 \leqslant k \leqslant 1}\left|\eta_{k}\right|$.

Proof. From the proof of Theorem 1 it is obvious that--using the same notations-

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \eta_{k}^{n} h_{n, 1}\left(\eta_{k}\right)=0 \quad(k=1.2, \ldots, l) \tag{7}
\end{equation*}
$$

By the definition of $h_{n, 1}$, we may write

First we prove that the system of equations

$$
\begin{equation*}
\stackrel{1}{i} \alpha_{1}(j) \frac{1}{i-i} \beta_{i, 1} \eta_{k}^{i}=\xi_{k, l} \quad(k=1, \ldots, l) \tag{9}
\end{equation*}
$$

is solvable for the $\alpha,(j)$'s as "unknowns." with arbitrary $\xi_{k, l}$. We prove it by induction on l. If $l=2$, then it follows by easy computation.

Let $\omega_{l-1}(z)=\omega_{l}(z)\left(z-\eta_{l, 1}\right)=\sum_{i}^{l+}{ }_{0}^{1} \beta_{i, l+1} z^{i}$. Then

$$
\begin{aligned}
& \beta_{i, l+1}=-\beta_{0.1} \eta_{1+1} \quad \text { if } i=0 . \\
& =\beta_{i} \quad 1,1-\eta_{i+1} \cdot \beta_{i, 1} \quad \text { if } \quad 0<i<1+1 . \\
& =1 \quad \text { if } i=1+1 . \\
& \xi_{k, l+1}=\bigcup_{i=1}^{1-1} a_{l+1}(j) \bigsqcup_{i-j}^{+!} \beta_{i, l+1} \eta_{k}^{i \cdots j} \\
& =\sum_{j-1}^{i} \alpha_{1+1}(j)\left|\frac{1}{i}\left(\beta_{i+1, t}-\eta_{1 \cdot 1} \beta_{i, I}\right) \eta_{k}^{i}+\beta_{l, 1} \eta_{k}^{l, 1}{ }^{i}\right| \\
& +\alpha_{t+1}(l+1) \\
& =\sum_{j=1}^{1} \alpha_{1+1}(j)\left\{\beta_{j-1.1}+\left(\eta_{k}-\eta_{1.1}\right) \sum_{i}^{\prime} \beta_{i .1} \eta_{k}^{i j}\right\}+\alpha_{1,1}(l+1) \\
& =\sum_{i}^{i} \alpha_{l+1}(j) \beta_{j-1, i}+\left(\eta_{k}-\eta_{l, 1}\right) \sum_{i=1}^{i} \alpha_{l+1}(j) \sum_{i=1}^{i} \beta_{i, 1} \eta_{k}^{i} ; \\
& (k=1.2, \ldots, l+1) .
\end{aligned}
$$

So

$$
\frac{\xi_{k, l, 1}-\xi_{i+1, l+1}}{\eta_{k}-\eta_{l+1}}=\bigsqcup_{j=1}^{1} \alpha_{l+1}(j) \sum_{i=j}^{1} \beta_{i, l} \eta_{k}^{i j} \quad(k=1,2, \ldots l)
$$

Hence we have reduced the case $l+1$ to the case l and completed the inductive proof.

Writing, in (9), $b_{n(l+1)-j}$ instead of $\alpha_{l}(j)$, we get, by (7), $\xi_{k . l}=o\left(\left|\eta_{k}\right|^{-n}\right)$ ($k=1,2, \ldots, l$). Solving (9) for $b_{n u+1),}$, we obtain

$$
\begin{equation*}
\left|b_{n(l-1)-j}\right|=o\left(\max \left|\eta_{k}\right|^{\cdots n}\right)=o\left(\gamma_{1}^{-n}\right) \quad(j=1,2 \ldots, l), \tag{10}
\end{equation*}
$$

i.e., $\overline{\lim }_{n \rightarrow x}\left|b_{n(l+1)}\right|^{1 /(n(1+1)-j)} \leqslant \gamma_{1}^{-1:(1+1)}(j=1,2, \ldots, l)$. Thus,

$$
g(z)=\sum_{j<0}^{\infty} b_{j(l+1)} z^{j(l+1)}+\sum_{n=0}^{\infty} \sum_{1}^{\prime} b_{n(l+1)+j} z^{n(l+1)-j}=g_{1}(z)+g_{2}(z) .
$$

From (10), $g_{2} \in R\left|D_{\gamma_{1}^{(1+1)}}\right|$. Now, $g \in A_{\rho}$ so that $g_{1} \in A_{\rho}$ as well; hence $g_{1}(z)=\varphi\left(z^{l+1}\right)$, where $\varphi \in A_{\rho^{l-1}}$ which gives the desired result. Q.E.D.

Remark 1. There exists a $g \in A_{1}$ such that, for any $\eta \in \mathbb{C}$.

$$
\lim _{n \rightarrow \infty} d_{n-1, l}\left(f_{\rho}, \eta\right)=0 \quad(\rho \geqslant 1)
$$

where $f_{\rho}(z)=(z-\eta) g(z / p)$ (here g is independent of the choice of $\left.\eta\right)$.
Proof. Let $g(z)=\sum_{p} p^{-2} z^{p-1}$. where p runs over the primes. Evidently $g \in A_{1}$ and g is continuous in \bar{D}_{1}; so $d_{n-1,(}\left(f_{\rho}\right)$ exists even in the case $\rho=1$. In the case $s=1, h_{n}(z)$ takes the form

$$
h_{n}(z)=\sum_{j+1} b_{j n-1}
$$

so $h_{n}(z)$ is identically 0 because a comosite number minus one is never equal to a prime number minus one. Hence, by (5), we have proved our statement.

Remark 2. Above we gave an example of a function $f \in A$, for which $d_{n-1, i}(f, z)$ converges to 0 at a point outside $|z| \leqslant 1$. It remains an open question whether a function $f \in A_{1}$ exists such that $d_{n-1, i}(f, z)$ converges to zero at several points outside $|z| \leqslant 1$.

Remark 3. Theorem 2 is a partial converse of Theorem 1. It would be interesting to characterize all functions for which (4) is true.

Remark 4. In |1|, Cavaretta et al. proved that if $f \in A_{\rho}(\rho>1)$ and if f is continuous on $|z| \leqslant \rho$, then

$$
\begin{equation*}
\max _{|z| \leqslant \rho^{\prime \cdot 1}}\left|d_{n-1 . l}(f, z)\right|=O\left(E_{n \quad 1}(f)\right), \quad \text { as } \quad n \rightarrow \infty \tag{11}
\end{equation*}
$$

where

$$
E_{n}(f)=\min \max _{|z| \times \rho}\left|f(z)-p_{n}(z)\right|,
$$

the minimum being taken over all polynomials $p_{n}(z)$ of degree $\leqslant n$. The following simple example shows that this estimation is sharp. Let $f \in A_{p}$: $f(z)=\sum_{k}^{x}{ }_{0}(z / \rho)^{k} b_{k}$, where $b_{k} \geqslant 0$. Then

$$
\begin{align*}
E_{n-1}(f) & \leqslant \max _{|z| \leqslant \rho}\left|f(z)-\sum_{k-1)}^{n}(z / \rho)^{k} b_{k}\right| \tag{12}\\
& =\max _{\mid=1 \leqslant \rho}\left|\frac{\sum_{k}}{k-n}(z / \rho)^{k} b_{k}\right|={\underset{k-n}{k}}^{n} b_{k}
\end{align*}
$$

and

$$
\begin{align*}
\max _{|z| \leqslant \rho^{\prime}+1}\left|d_{n-1,1}(f, z)\right| & =\sum_{k=0}^{n} \rho^{k(l+1)} \varliminf_{j-1}^{\prime} \rho^{k-j n} b_{k+j n} \geqslant \sum_{k-1)}^{n} \rho^{\prime(k n)} b_{k+l n} \\
& \geqslant \rho^{\prime} b_{l+1) n-1 .} \tag{13}
\end{align*}
$$

Now let $g_{l}(z)=\sum_{k \ldots 0}^{\alpha}(z / \rho)^{(l+1)^{k}-1} /(l+1)^{k}$. Evidently $g_{l} \in A_{\rho}$ and, by (12), (13) and an easy computation, for all positive integers n and l,

$$
\max _{|=| \leqslant \rho^{l}+1}\left|d_{l+1)^{n-1 . l}}\left(g_{l}, z\right)\right| \geqslant \rho^{-l} l /(l+1)^{2} E_{l l+1)^{n}} \quad\left(g_{l}\right) .
$$

i.e.,

$$
\varlimsup_{n \rightarrow i} \frac{\max _{\mid z 1 \leq \rho^{\prime}, 1}\left|d_{n, 1}\left(g_{1}, z\right)\right|}{E_{n}\left(g_{l}\right)}>0
$$

This proves the sharpness of (11).

References

1. A. S. Cabaretta, Jr., A. Sharma, and R. S. Varga. Interpolation in the roots of unity: An extension of a theorem of J. L. Walsh. Resultate Math. 3 (1981). 155-191.
2. J. L. Wash. "Interpolation and Approximation by Rational Functions in the Complex Domain." AMS Coll. Publ., Volume XX. Providence, R.I., 1969.
3. E. B. Saff and R. S. Varga. A note on the sharpness of J. L. Walsh's theorem and its extensions for interpolation in the roots of unity, Acta Math. Acad. Sci. Hungar., in press.
