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Let R|D,| be the collection of functions analytic on the disk D, =
|z| <pi, and let A, be the set of all functions from R|D | which have at
least one singularity on the circle |z| = p. Further, let D = |z 1 lz] < pi.

Let us denote by p,_,(/f. z) the Lagrange interpolatory polynomial of

SE A4, on the nth roots of unity, and if /(z) =3, ,a,z" then let
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Then. a result of Cavaretta et al. | 1] can be stated as

THEOREM A. For each fC A, (p > 1) and each positive integer |,

lim d, , (fiz)=0 if €D, (1)

the convergence being uniform and geometric on any closed subset of D, ..
Moreover, (1) is best possible in the sense that there is some f € A, and some

Zwith |21 =p'* ! for which d, | (f. ?) does not tend to zero as n - oc.

The case /=1 was proved by Walsh [2]. In |3]|. Saff and Varga
investigated d,_, ,(/; z) if |z| > p'™". They established

THEOREM B. For each f€ A, and for each positive integer I, d, | (/.z)
can be hounded in at most [ distinct points in |z| > p"*'. This result is sharp.
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in the sense that, given any [ distinct points {n,} | in the annulus p'' ' <
\z| <p''?, there is an f€ A, for which

lim d, , (fin)=0. k=121 (2)

Concerning to the latter result, the following questions arise:

(i) In Theorem B, is the restriction |7, < p''* necessary?

(i) For which functions is (2) true with prescribed {y,1} ?

{(iii) What is the situation in the case p = 1?

In the following, we deal with these questions. Let s. / and L be positive
integers with s </ < L, let p> 1, and let {n,}, , be distinct points with
pltt <l < p” Ny (k=1.2...s). Further. let 9 €4, and w & R|D, v
where r is the least common multiple of {/+ 1./+ 2...L} and « =
max; . |1l

THEOREM 1. Let w(z)=| [} (2 —n,) and let

S@)=w(z)o(z") + w(z). (3)
Then, f&€ A, and

lim d, ., (/i) =0 (k=1.2...5). 4)

Proof. As al""*” > p. then y is analytic in D, and as o(z")€ 4. it
follows that f€ 4,
Now let f€ 4, be arbltrary and write f(z) =Y, ,a,z" Further. let
gy =/)olz)=2"1 b It follows that g € 4, and aA Y o Biby
(z)=

0
. ok
if k2>s, where w( > a2 = > Bz z/. Since p, (fn)=20 0

_4/ 0 Y |
,\,_j,,“akf,n (see, e.g.. |1, p. 160, Eq. (2.9)]).
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Hence, denoting

s i—1 g
hn(Z): N ﬂi N zk }_‘ bin+ k—i
1 kS0 jele1
(4) is true iff
lim nih,(n,)=0 k=1,2..9) (5)

We next write /,(z) as
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= hn.l(z) + hn.z(z)'

Let ¢ > 0 be such that a, < (p —¢)" *'. Since g € 4. then lim, _, [b, /""" =
I/p. hence |b,| < 1/(p — &)~ if k > k,(¢). Thus,

" mel” a,
ik, 1) =0 (ﬁm) =0 <<W) ) -0 as 11— 0.

Now we show that if g(z) = ¢(z"), then h, (z)=0. If r is not a divisor of m.
then b, =0. If [+ 1 <j< L, then j|r by the definition of ». If 0k <
i< s <[ then j is not a divisor of i —k so r is not a divisor of ju + k — i,
Hence b;, ;=0 and so h, (z)=0. From this (5) follows when f(z)=
wz)o(z") so in this case (4) is true. It follows from Theorem A that if
f=w, then (4) is true, but as d,, |, is a linear operator, we have proved our
statement. Q.E.D.

In Theorem | we gave a sufficient condition for (4). In the case of s =1/
and L =7+ 1 we give a necessary condition for (2).

THEOREM 2. [If f€ A, pl <l < p!t (k=1,2.....1) and (4) fulfills
with s = [ then

S =wlz)ez" ) + wz), (6)

where 9 € A, and y € R|D, 1o |. Here = min, _,_,'n,].
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Proof.  From the proof of Theorem | it is obvious that—using the same
notations—

lim pih, (n)=0 (k= 1.2...10) (1

H—f

By the definition of 4 we may write

n.l»
[ i /

!
hn.](’]k): \_ ﬁi ,\;_ ’]'Lbn(ﬁ Wi i \_ bn(/b [ _\_ /)}1’];\ " (8)
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First we prove that the system of equations

! I

iaw ﬁ”mf:gJ (k= L.d). (9)

j

is solvable for the o,(j)'s as “unknowns.” with arbitrary £, ,. We prove it by
induction on /. If / = 2, then it follows by easy computation.
Let w, (z)=wz)z~n,, )=>"1}F,,. 2" Then
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Hence we have reduced the case /+ 1 to the case / and completed the
inductive proof.

Writing, in (9), b, ,_; instead of a,(j), we get, by (7). 1§ ,|=o(n, ")
(k= 1,2,...1). Solving (9) for b,,,,, ;, we obtain

bpge il =omaxin g "y =o(y/")  (j=1.2..1) (10)

1 1 Lind+ =) LU+ D P
ie., lim bpaon i1 "y (j=1.2...1). Thus.

H—

£ B !
glz) = : bj(lwl)zj(l+Ij+ ,\_‘ : b"”*“HzmH1)-,f:g](z)+g2(z).
j 0 n=0 j 1
From (10), g, € R[Dyuin|l. Now, g€ A4, so that g, €4, as well: hence
g(z2)=0(z'"""), where g € A .-+ which gives the desired result. Q.E.D.

Remark 1. There exists a g € 4, such that, for any 5 € C,

lim d, (=0 (p=1)

where f (z) = (z — 1) g(z/p) (here g is independent of the choice of 7).

Proof. Let g(z)=3_, p’zzi’ ', where p runs over the primes. Evidently

g€ A, and g is continuous in D,;so d, , [(/f,) exists even in the case p= 1.
In the case s =1, A,(z) takes the form

£

hz)= N\ b,

jir- 1
A

so h,(z) is identically O because a comosite number minus one is never equal
to a prime number minus one. Hence. by (5), we have proved our statement.

Remark 2. Above we gave an example of a function f€ 4, for which
d,_, ([ z) converges to 0 at a point outside |z| < I. It remains an open
question whether a function f& A, exists such that d, _, (/. z) converges to
zero at several points outside |z| < 1.

Remark 3. Theorem 2 is a partial converse of Theorem I. It would be
interesting to characterize all functions for which (4) is true.

Remark 4. In |1], Cavaretta ef al. proved that if f€ A, (p > 1) and if /
is continuous on |z| < p, then
max |d,, (/.2)=0F, (). as n- o
where (t1)
E,(f)=min max f(z) = pu(2)i

4
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the minimum being taken over all polynomials p,(z) of degree <n. The
following simple example shows that this estimation is sharp. Let fE€ A :
f(z)y=37 (z/p)* b,. where b, > 0. Then

nol |
Eo )< mas 16— N @)
i k-0 ! (12)
=max | N (#p) b = N b,
I=l<p k. n i k-n

and

1 no1

n £
max |d, | (/.z)= \_ prtirn _\_P krimbk«m? \_ P by,

2l < pf
lzl<pl! k=0 i k-0

2[] [b4[+l)nfl‘ (13)

Now let g,(z) =37 ,(z/p)"* " '/(/ + 1)*. Evidently g, € 4, and. by (12).

k-

(13) and an easy computation, for all positive integers n and /,

max \dg. 01082 2P Y+ 1Y E e (g

[zl <pl!

FE. max\:lxp""dn.l(gl'rz)i

> 0.
e En(gl)

This proves the sharpness of (11).
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